Five EmbedDev logo Five EmbedDev

An Embedded RISC-V Blog
RISC-V Instruction Set Manual, Volume I: RISC-V User-Level ISA , riscv-priv-1.10 2017/05/07

13 “D” Standard Extension for Double-Precision Floating-Point, Version 2.0

This chapter describes the standard double-precision floating-point instruction-set extension, which is named “D” and adds double-precision floating-point computational instructions compliant with the IEEE 754-2008 arithmetic standard. The D extension depends on the base single-precision instruction subset F.

13.1 D Register State

The D extension widens the 32 floating-point registers, f0 f31, to 64 bits (FLEN=64 in Figure [fprs]). The f registers can now hold either 32-bit or 64-bit floating-point values as described below in Section 1.2.

FLEN can be 32, 64, or 128 depending on which of the F, D, and Q extensions are supported. There can be up to four different floating-point precisions supported, including H, F, D, and Q. Half-precision H scalar values are only supported if the V vector extension is supported.

13.2 NaN Boxing of Narrower Values

When multiple floating-point precisions are supported, then valid values of narrower n-bit types, n< FLEN , are represented in the lower n bits of an FLEN-bit NaN value, in a process termed NaN-boxing. The upper bits of a valid NaN-boxed value must be all 1s. Valid NaN-boxed n-bit values therefore appear as negative quiet NaNs (qNaNs) when viewed as any wider m-bit value, n < m FLEN .

Software might not know the current type of data stored in a floating-point register but has to be able to save and restore the register values, hence the result of using wider operations to transfer narrower values has to be defined. A common case is for callee-saved registers, but a standard convention is also desirable for features including varargs, user-level threading libraries, virtual machine migration, and debugging.

Floating-point n-bit transfer operations move external values held in IEEE standard formats into and out of the f registers, and comprise floating-point loads and stores (FLn/FSn) and floating-point move instructions (FMV.n.X/FMV.X.n). A narrower n-bit transfer, n< FLEN , into the f registers will create a valid NaN-boxed value by setting all upper FLEN − n bits of the destination f register to 1. A narrower n-bit transfer out of the floating-point registers will transfer the lower n bits of the register ignoring the upper FLEN − n bits.

Floating-point compute and sign-injection operations calculate results based on the FLEN-bit values held in the f registers. A narrow n-bit operation, where n< FLEN , checks that input operands are correctly NaN-boxed, i.e., all upper FLEN − n bits are 1. If so, the n least-significant bits of the input are used as the input value, otherwise the input value is treated as an n-bit canonical NaN. An n-bit floating-point result is written to the n least-significant bits of the destination f register, with all 1s written to the uppermost FLEN − n bits to yield a legal NaN-boxed value.

Conversions from integer to floating-point (e.g., FCVT.S.X), will NaN-box any results narrower than FLEN to fill the FLEN-bit destination register. Conversions from narrower n-bit floating-point values to integer (e.g., FCVT.X.S) will check for legal NaN-boxing and treat the input as the n-bit canonical NaN if not a legal n-bit value.

Earlier versions of this document did not define the behavior of feeding the results of narrower or wider operands into an operation, except to require that wider saves and restores would preserve the value of a narrower operand. The new definition removes this implementation-specific behavior, while still accommodating both non-recoded and recoded implementations of the floating-point unit. The new definition also helps catch software errors by propagating NaNs if values are used incorrectly.

Non-recoded implementations unpack and pack the operands to IEEE standard format on the input and output of every floating-point operation. The NaN-boxing cost to a non-recoded implementation is primarily in checking if the upper bits of a narrower operation represent a legal NaN-boxed value, and in writing all 1s to the upper bits of a result.

Recoded implementations use a more convenient internal format to represent floating-point values, with an added exponent bit to allow all values to be held normalized. The cost to the recoded implementation is primarily the extra tagging needed to track the internal types and sign bits, but this can be done without adding new state bits by recoding NaNs internally in the exponent field. Small modifications are needed to the pipelines used to transfer values in and out of the recoded format, but the datapath and latency costs are minimal. The recoding process has to handle shifting of input subnormal values for wide operands in any case, and extracting the NaN-boxed value is a similar process to normalization except for skipping over leading-1 bits instead of skipping over leading-0 bits, allowing the datapath muxing to be shared.

13.3 Double-Precision Load and Store Instructions

The FLD instruction loads a double-precision floating-point value from memory into floating-point register rd. FSD stores a double-precision value from the floating-point registers to memory.

The double-precision value may be a NaN-boxed single-precision value.



FLD and FSD are only guaranteed to execute atomically if the effective address is naturally aligned and XLEN64.

13.4 Double-Precision Floating-Point Computational Instructions

The double-precision floating-point computational instructions are defined analogously to their single-precision counterparts, but operate on double-precision operands and produce double-precision results.



13.5 Double-Precision Floating-Point Conversion and Move Instructions

Floating-point-to-integer and integer-to-floating-point conversion instructions are encoded in the OP-FP major opcode space. FCVT.W.D or FCVT.L.D converts a double-precision floating-point number in floating-point register rs1 to a signed 32-bit or 64-bit integer, respectively, in integer register rd. FCVT.D.W or FCVT.D.L converts a 32-bit or 64-bit signed integer, respectively, in integer register rs1 into a double-precision floating-point number in floating-point register rd. FCVT.WU.D, FCVT.LU.D, FCVT.D.WU, and FCVT.D.LU variants convert to or from unsigned integer values. FCVT.L[U].D and FCVT.D.L[U] are illegal in RV32. The range of valid inputs for and the behavior for invalid inputs are the same as for

All floating-point to integer and integer to floating-point conversion instructions round according to the rm field. Note FCVT.D.W[U] always produces an exact result and is unaffected by rounding mode.


The double-precision to single-precision and single-precision to double-precision conversion instructions, FCVT.S.D and FCVT.D.S, are encoded in the OP-FP major opcode space and both the source and destination are floating-point registers. The rs2 field encodes the datatype of the source, and the fmt field encodes the datatype of the destination. FCVT.S.D rounds according to the RM field; FCVT.D.S will never round.


Floating-point to floating-point sign-injection instructions, FSGNJ.D, FSGNJN.D, and FSGNJX.D are defined analogously to the single-precision sign-injection instruction.


For RV64 only, instructions are provided to move bit patterns between the floating-point and integer registers. FMV.X.D moves the double-precision value in floating-point register rs1 to a representation in IEEE 754-2008 standard encoding in integer register rd. FMV.D.X moves the double-precision value encoded in IEEE 754-2008 standard encoding from the integer register rs1 to the floating-point register rd.


13.6 Double-Precision Floating-Point Compare Instructions

The double-precision floating-point compare instructions are defined analogously to their single-precision counterparts, but operate on double-precision operands.


13.7 Double-Precision Floating-Point Classify Instruction

The double-precision floating-point classify instruction, FCLASS.D, is defined analogously to its single-precision counterpart, but operates on double-precision operands.